

SISTEMA OTTICO-SPETTRALE RETE DOAS ARCELOR MITTAL

REPORT MARZO 2021

1 d i 1 5

CENTRO REGIONALE ARIA

ARPA PUGLIA
Agenzia regionale per la prevenzione
e la protezione dell'ambiente

www.arpa.puglia.it

ARPA PUGLIA

Agenzia regionale per la prevenzione e la protezione dell'ambiente

Sommario

Sommario	2
Andamento mensile dei singoli inquinanti	8
SO ₂	
O ₃	9
NO ₂	
Benzene	
Toluene	13
Naftalene	

2 d i 1 5

Nell'ambito della prescrizione n.85 del decreto di riesame dell'AIA di Acciaierie di Italia, ec ARCELOR MITTAL (ex ILVA), è stato stipulato il "Contratto di comodato tra ILVA S.p.A. e ARPA Puglia per l'utilizzazione e la gestione delle centraline per il monitoraggio della qualità dell'aria e per il sistema di monitoraggio ottico-spettrale di optical fence monitoring" presso lo stabilimento siderurgico di Taranto (recepito con Del. DG ARPA n. 407 del 07.08.2013); tale accordo prevede per ARPA, all'art. 4 lettera c), l'emissione di report mensili riguardanti l'analisi della rete di cinque postazioni DOAS, installate sul perimetro dello stabilimento industriale ex ARCELOR MITTAL, ora Acciaierie di Italia. Il presente report è relativo alle elaborazioni/analisi dei dati della suddetta rete DOAS pervenuti al server di ARPA presente presso gli uffici ARPA di Taranto, per il mese di Marzo 2021.

Si premette che tale strumentazione è finalizzata essenzialmente al "fence monitoring" ed allo studio di fenomeni/eventi di possibile inquinamento, non è utile né al confronto con limiti normativi né con altri risultati ottenuti con metodi ufficiali.

Va specificato, inoltre, che l'analisi dei dati DOAS, finalizzata alla verifica delle emissioni 3 d i 1 5 industriali, non è né automatica né immediata.

<u>Pertanto, ad oggi è possibile utilizzare il segnale prodotto dai sistemi DOAS per</u> verifiche/valutazioni unicamente qualitative sui dati grezzi pervenuti ad ARPA.

Nel periodo oggetto del presente report **non** sono stati riscontrati superamenti dei valori soglia definiti dal STGE di ARPA con nota prot. 33577 del 2015/06/12 pari a 1/10 dei valori IDLH (*Immediatly Dangerous to Life Health*) e di seguito riportati.

Composto	IDLH ppm	1/10 IDLH ppm	Concentrazioni che convertite	IDLH μg/m³	1/10 IDLH μ g / m ³
NO ₂	20	2	$\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = \lim_{n$	37628	3763
SO_2	100	10	25°C e 1 atm	261759	26176
O_3	5	0,5	corrispondono	9816	982
Naftalene	250	25	a	1308793	130879
Benzene	500	50	\rightarrow	1595092	159509
Toluene	500	50		1881391	188139

L'identificazione ed i parametri ricercati nelle 5 stazioni sono riportati di seguito, mentre in figura 1 è mostrata la loro collocazione, insieme alle centraline di monitoraggio della qualità dell'aria.

STAZIONE	INQUINANTI MONITORATI
DOAS1 DIREZIONE	
DOAS2 PARCHI	
DOAS3 AGGLOMERATO	SO ₂ , NO ₂ , O ₃ , Benzene, Toluene, Naftalene
DOAS4 PORTINERIA IMPRESE	
DOAS5 AREA 12	

Fig.1 - Dislocazione delle postazioni di monitoraggio

Ognuno dei sistemi DOAS sopraelencati è costituito da un ricevitore posto tra due emettitori; vengono così generati due percorsi ottici distinti (paths), che vengono identificati come AOR (antiorario) e OR (orario); tale distinzione avviene considerando il percorso più breve che dal ricevitore (ad es. DOAS1 DIREZIONE) porta all'emettitore (DOAS1 E) per un osservatore posto al centro dell'area industriale, come riportato in figura 2.



Fig.2 – Identificazione dei percorsi ottici

Di seguito sono indicate le coordinate delle postazioni degli emettitori e dei ricevitori.

Coordinate Gauss - Boaga Rete ILVA Doas

		Coordinate geografiche (Gauss-Boaga)		
AREA DI RIFERIMENTO	Codice componente	Longitudine EST	Latitudine NORD	
	E5-1	2706306.020	4487852.042	
Area 12	E5-2	2705582.651	4487327.465	
	D5	2705908.552	4487532.850	
	E4-1	2707845.022	4487709.666	
Portineria imprese	E4-2	2707151.982	4488031.475	
	D4	2707504.370	4487920.990	
	E3-1	2708519.152	4485554.740	
Agglomerato	E3-2	2708306.225	4486511.762	
	D3	2708409.612	4486017.554	
	E2-1	2707616.047	4484712.785	
Parchi	E2-2	2708419.047	4485311.120	
	D2	2707996.684	4484994.685	
	E1-1	2706745.103	4485472.608	
Direzione	E1-2	2707331.442	4484736.418	
	D1	2707000.129	4485107.927	

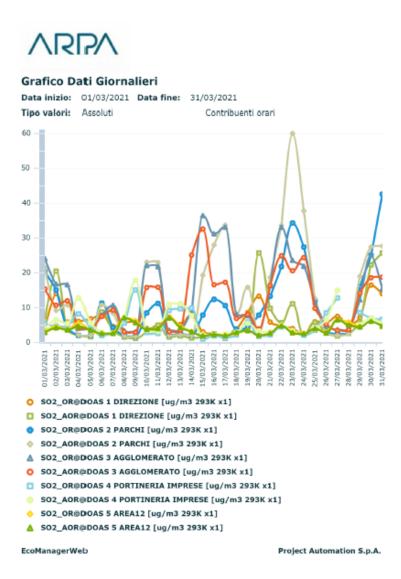
<u>Legenda</u> :	E _{x-1}	Doas Emettitore 1 cammino ottico orario
	E _{x-2}	Doas Emettitore 2 cammino ottico anti-orario
	D _x	Doas Ricevitore

ALLEGATO: POSIZIONAMENTO SISTEMI DOAS "FENCE MONITORING"

- 1 Doas 1 Direzione
- D2 Doas 2 Parchi
- D3 Doas 3 Agglomerato
- D4 Doas 4 Port. Imprese
- D5 Doas 5 Area 12

Si riporta una sintetica tabella con alcune specifiche tecniche estratte dal manuale d'uso dell'analizzatore della OPSIS, modello AR500S, presente nelle postazioni DOAS della rete ARCELOR MITTAL, che rilevano gli inquinanti: SO₂, NO₂, O₃, Benzene, Toluene, Naftalene.

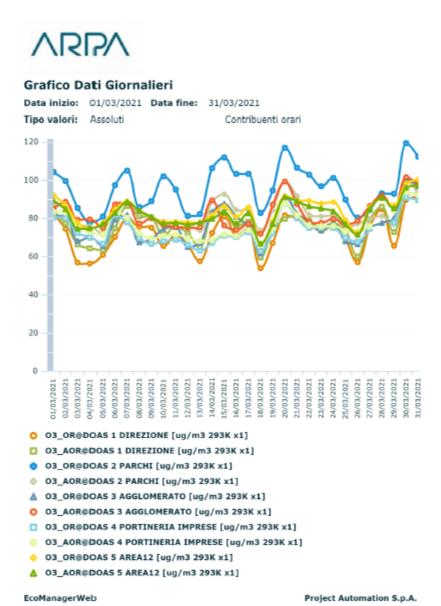
Performance Data (typical data which may vary significantly depending on application)


Compound	Max. measurement range (500 m path) ³⁾	Min. detectable quantities (monitoring path 500 m, measure- ment time 1 min.)	Zero drift (500 m path, max. per month)	Span drift (per month, better than)	Span drift (per year, better than)	Linearity error (of measure- ment range, better than)	Max. length of fibre optic cable (when measuring several com- pounds) ¹⁾	Hardware requiremen
AR 500 / AR 520	Analyser							
NO ₂	0-2000 µg/m ³	1 µg/m³	$\pm 2 \mu g/m^3$	±2%	±4%	±1%	10 m	AR 500/520
SO ₂	0-5000 µg/m ³	1 μg/m ³	±2 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
O ₃	0-1000 µg/m ³	3 μg/m ³	±6 µg/m ³	±2%	±4%	±1%	10 m	AR 500/520
NO ²⁾	0-2000 µg/m ³	2 μg/m ³	±4 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
NH ₃ ²⁾	0-500 µg/m ³	2 μg/m ³	±4 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
NO ₃	0-500 μg/m ³	0.1 μg/m ³	±0.2 µg/m ³	±2%	±4%	±1%	10 m	AR 500/520
HNO ₂	0-2000 µa/m ³	1 μg/m ³	±2 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
HF	0-2000 µg/m ³	20 μg/m ³	±40 μg/m ³	±2%	±4%	±1%	10 m	AR 520
Hg	0-2000 ng/m ³	20 ng/m ³	±40 ng/m ³	±2%	±4%	±1%	10 m	AR 500/520
H ₂ O	0-100 g/m ³	0.2 g/m ³	$\pm 0.4 \text{ g/m}^3$	±2%	±4%	±1%	10 m	AR 500/520
Styrene	0-2000 µg/m ³	5 μg/m ³	±10 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
CS ₂	0-2000 µg/m ³	20 μg/m ³	$\pm 40 \mu g/m^3$	±2%	±4%	±1%	10 m	AR 500/520
Formaldehyde	0-2000 µg/m ³	2 μg/m ³	±4 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
Acetaldehyde	0-2000 µg/m ³	20 μg/m ³	±40 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
Phenol	0-2000 µg/m ³	1 μg/m ³	±2 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
Benzene	0-2000 µg/m ³	3 μg/m ³	±6 μg/m³	±2%	±4%	±1%	10 m	AR 500/520
Toluene	0-2000 µg/m ³	3 μg/m ³	±6 μg/m³	±2%	±4%	±1%	10 m	AR 500/520
p-, m-Xylene	0-2000 µg/m ³	3 μg/m ³	±6 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
o-Xylene	0-2000 µg/m ³	10 μg/m ³	$\pm 20 \mu g/m^3$	±2%	±4%	±1%	10 m	AR 500/520
o-, m-, p- Cresol	0-2000 µg/m ³	5 μg/m ³	±10 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
C ₆ H ₅ Cl	0-2000 µg/m ³	5 μg/m ³	±10 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520
C ₆ H ₄ Cl ₂	0-2000 μg/m ³	5 μg/m ³	±10 μg/m ³	±2%	±4%	±1%	10 m	AR 500/520

Andamento mensile dei singoli inquinanti

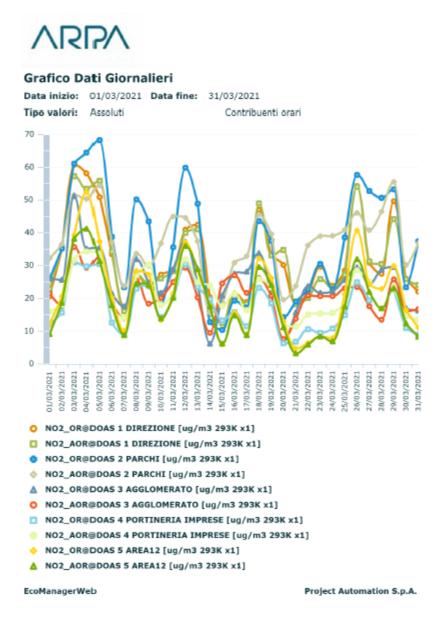
SO_2

I valori medi giornalieri più elevati nel corso del mese sono stati registrati lungo il percorso DOAS2 AOR – Parchi, con una media giornaliera più elevata il 23 Marzo.


Sono stati riscontrati incrementi delle concentrazioni di SO₂ nei giorni 14-17/03/2021 e 30-31/03/2021 lungo i percorsi DOAS2 e DOAS3.

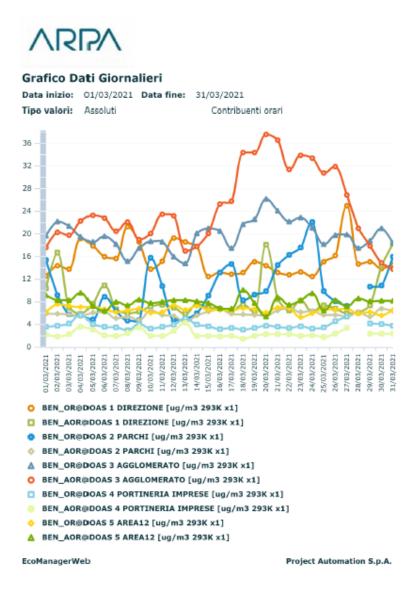
Lungo gli altri percorsi i livelli misurati sono tra loro confrontabili.

 O_3



Nel grafico si osserva un andamento simile dei valori lungo i vari percorsi con livelli più elevati lungo il DOAS2 OR – Parchi.

NO_2

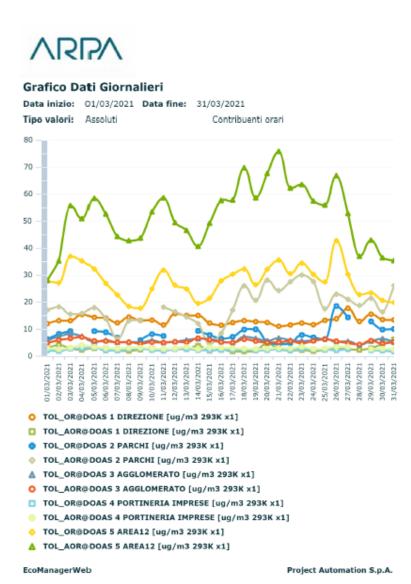


Gli andamenti dei valori osservati lungo tutti i percorsi sono tra loro confrontabili. Per la maggior parte del mese, lungo il percoro DOAS2-OR Parchi sono state osservate le concentrazioni medie giornaliere più elevate.

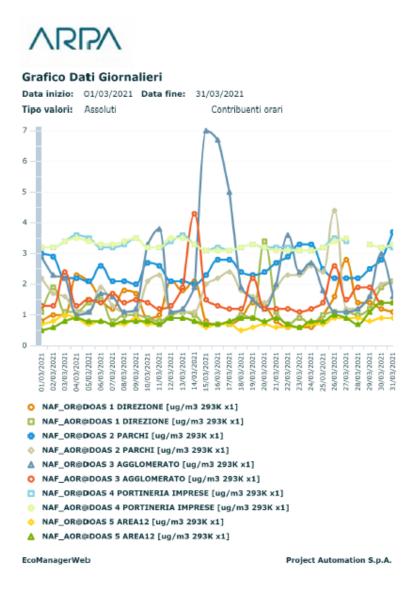
Benzene

Dal grafico si rileva che i valori medi giornalieri più elevati nel mese oggetto del presente report sono stati registrati lungo il percorso DOAS3 AOR – Agglomerato. Anche lungo il percorso DOAS1 OR-Direzione e DOAS3-OR Agglomerato sono state registrate alcune medie giornaliere significative.

Lungo gli altri percorsi, gli andamenti appaiono costanti nel mese e in linea tra loro.



Toluene



I valori medi giornalieri più elevati sono stati registrati lungo i due percorsi della postazione DOAS5 – Area12 e, a seguire, DOAS2 - Parchi. Gli altri percorsi hanno mostrato andamenti tra loro confrontabili e costanti nel corso del mese.

Naftalene

Nel corso del mese, lungo i 2 percorsi della stazione DOAS4 – Portineria Imprese sono stati registrati i valori medi giornalieri più elevati rispetto a tutti gli altri. A seguire, si segnalano i valori che sono stati misurati lungo il percorso DOAS3 OR – Agglomerato con 2 picchi rilevanti nel mese; vi sono poi da segnalare i livelli misurati lungo il percorso DOAS2-OR Parchi e alcune medie che sono state misurate lungo i percorsi DOAS1-OR Direzione e DOAS3-AOR Agglomerato. Nel corso del mese i livelli osservati lungo i rimanenti percorsi hanno mostrato andamenti tra loro confrontabili.

In conclusione, come indicato in premessa, nel periodo oggetto del presente report, per tutti i parametri rilevati medianteo la rete DOAS di AMI, **non** sono stati riscontrati superamenti dei valori-soglia definiti dal STGE di ARPA con nota prot. 33577 del 2015/06/12, pari a 1/10 dei valori IDLH (*Immediatly Dangerous to Life Health*).

Taranto, 23 agosto 2021

Il Direttore del CRA

Dott. Domenico Gramegna

Doueino Gramegra

1 5 d i 1 5

Il Funzionario T.I.F. Qualità dell'Aria BR-LE-TA Dott.ssa Alessandra Nocioni

GdL QA CRA Taranto

Dott. Daniele Cornacchia Dott. Gaetano Saracino Dott. Valerio Margiotta P.I. Maria Mantovan