

SERVIZIO DI MONITORAGGIO DEI CORPI IDRICI SUPERFICIALI DELLA REGIONE PUGLIA

Monitoraggio qualitativo dei corpi idrici superficiali per il triennio 2016-2018

La Rete di monitoraggio per le acque a specifica destinazione Acque destinate alla produzione di acqua potabile

Proposta di classificazione per l'annualità 2019

Acque destinate alla produzione di acqua potabile Annualità 2019

Acque destinate alla produzione di acqua potabile

Proposta di classificazione per l'annualità 2019

A cura di:

Nicola Ungaro

ARPA Puglia – Direttore della UOC Ambienti Naturali

Erminia Sgaramella

ARPA Puglia – UOC Ambienti Naturali

con il contributo dei Dipartimenti Provinciali di ARPA Puglia di Foggia e Bari, Territorio e Laboratorio 2

Acque destinate alla produzione di acqua potabile Annualità 2019

Premessa

I due bacini artificiali destinati alla produzione di acqua potabile nella Regione Puglia sono l'invaso di Occhito sul Fortore, al confine con la regione Molise, e l'invaso di Monte Melillo, sul torrente Locone, affluente del fiume Ofanto. Le acque degli invasi sono derivate agli impianti di potabilizzazione del Fortore e del Locone.

La Regione Puglia ha proceduto per la prima volta alla classificazione delle acque dei due invasi con Deliberazione di Giunta Regionale n. 1284 del 21 luglio 2009 e successiva rettifica, effettuata con D.G.R. n. 1656 del 15 settembre 2009, in esito alla campagna di monitoraggio condotta nel 2008; le acque di entrambi gli invasi sono state preventivamente classificate, ai sensi dell'art. 80 del D.lgs. n. 152/06, nella categoria A2.

Successivamente le acque dei due invasi sono state sempre e costantemente monitorate, con le relative proposte di classificazione da parte di questa Agenzia.

In questo documento si riporta la proposta di classificazione delle acque destinate alla produzione di acqua potabile per l'anno 2019, ai sensi dell'articolo 80 del D.Lgs. n. 152/2006, facendo riferimento alla metodologia di calcolo riportata nell'Allegato 2 alla Parte III del D.Lgs. n. 152/06.

Normativa

La normativa italiana di riferimento, il D.Lgs. n. 152/2006, richiede che le acque superficiali destinate alla produzione di acqua potabile siano classificate a seconda delle loro caratteristiche fisiche, chimiche e microbiologiche e sottoposte ai trattamenti corrispondenti.

Per la classificazione nelle categorie A1, A2 o A3, le acque devono essere conformi ai valori specificati per ciascuno dei parametri indicati nella Tabella 1/A dell'Allegato 2 alla Parte III del D.Lgs. n. 152/2006.

In particolare, i valori devono essere conformi nel 95% dei campioni ai valori limite specificati nelle *colonne I (valori Imperativi)* e nel 90% ai valori limite specificati nelle *colonne G (valori Guida)*, quando non sia indicato il corrispondente valore nella colonna I.

Per il rimanente 5% o il 10% dei campioni che, secondo i casi, non siano conformi ai limiti, i parametri non devono discostarsi in misura superiore al 50% dal valore limite indicato, esclusi la temperatura, il pH, l'ossigeno disciolto ed i parametri microbiologici.

A seconda della categoria di appartenenza, le acque sono sottoposte ai trattamenti corrispondenti, come indicato nella tabella seguente.

Definizione delle tipologie di trattamento ai sensi del D.Lgs. n. 152/2006

Categoria	Trattamento
A1	Trattamento fisico semplice e disinfezione
A2	Trattamento fisico e chimico normale e disinfezione
А3	Trattamento fisico e chimico spinto, affinazione e disinfezione

Qualora le acque presentino caratteristiche fisiche, chimiche e microbiologiche qualitativamente inferiori ai valori limite imperativi della categoria A3, possono essere utilizzate, in via eccezionale, solo qualora non sia possibile ricorrere ad altre fonti di approvvigionamento e a condizione che le acque siano sottoposte ad opportuni trattamenti che consentano alle stesse di rientrare nei limiti previsti dalla normativa precedentemente citata.

Acque destinate alla produzione di acqua potabile Annualità 2019

Nel corso di 12 mesi di monitoraggio, la frequenza minima di campionamento e analisi per le acque a tale specifica destinazione già classificate è pari a **8**, fatta eccezione per i parametri del Gruppo I (pH, colore, materiali totali in sospensione, temperatura, conduttività, odore, nitrati, cloruri, fosfati, COD, ossigeno disciolto, BOD₅, ammoniaca), la cui frequenza annuale di monitoraggio, per le acque classificate in Categoria A3, deve essere pari a **12** campionamenti.

Deroghe

Per alcuni dei parametri previsti dalla tabella 1/A (colore, temperatura, nitrati, rame, solfati, ammoniaca) sono previste deroghe nei casi contemplati all'art. 81, lettera b) del D.Lgs. n. 152/2006, come di seguito integralmente riportato:

"Per le acque superficiali destinate alla produzione di acqua potabile, le regioni possono derogare ai valori dei parametri di cui alla Tabella 1/A dell'Allegato 2 alla parte terza del presente decreto:

b) limitatamente ai parametri contraddistinti nell'Allegato 2 alla parte terza del presente decreto Tabella 1/A dal simbolo (o), qualora ricorrano circostanze meteorologiche eccezionali o condizioni geografiche particolari".

Per i parametri nitrati, ferro disciolto, manganese, fosfati, COD, Saturazione dell'Ossigeno disciolto e BOD₅ è possibile derogare ai limiti nel caso di laghi che abbiano una profondità non superiore ai 20 metri, che per rinnovare le loro acque impieghino più di un anno e nel cui specchio non defluiscano acque di scarico, limitatamente ai parametri contraddistinti nell'Allegato 2 alla parte terza del presente decreto, Tabella 1/A da un asterisco (*) [art. 81 comma 1 lettera d)].

Per tutti i parametri della Tabella 1/A è possibile, infine, derogare ai limiti di legge in caso di inondazioni o di catastrofi naturali [art. 81 comma 1 lettera a)] o quando le acque superficiali si arricchiscono naturalmente di talune sostanze con superamento dei valori fissati per le categorie A1, A2 e A3 [art. 81 comma 1 lettera c)].

Monitoraggio 2019 - Analisi, risultati e proposta di classificazione

Le attività di controllo delle acque superficiali destinate alla produzione di acqua potabile sono incluse nell'ambito del più vasto piano di monitoraggio dei corpi idrici superficiali della Regione Puglia ai sensi della Direttiva Quadro Acque e del D.Lgs. n. 152/2006 e ss.mm.ii., di cui costituiscono parte integrante.

Ai fini della conformità alla specifica destinazione d'uso, anche nel 2019 ARPA Puglia ha monitorato i due invasi regionali destinati alla produzione di acqua potabile attraverso una stazione di controllo per ciascuno di essi.

Corpo idrico superficiale della Regione Puglia	Codice sito di monitoraggio	LAT (gradi, minuti, secondi– millesimi)	LONG (gradi, minuti, secondi– millesimi)
Occhito (Fortore)	AP_IO01	41°37′10,202′′ N	14°58′8,438′′ E
Locone (Monte Melillo)	AP_IL01	41°05′25,270′′ N	16°00′12,510′′ E

Nelle tabelle seguenti sono riportati i parametri e le frequenze di monitoraggio stabilite nel Piano di monitoraggio per le Acque destinate alla produzione di acqua potabile; oltre ai parametri previsti dal D.Lgs. n. 152/2006, si è stabilito di monitorare *una tantum* le sostanze di cui alle tabelle 1/A e 1/B del D.M. 260/2010, così come modificate dal D.Lgs. 172/2015.

Tra queste rientrano i parametri *Idrocarburi policiclici aromatici* e *Antiparassitari totali,* appartenenti al Gruppo III di cui al punto 2.2) dell'All. 2, sezione A del D.Lgs. n. 152/2006, per i quali la stessa norma

Acque destinate alla produzione di acqua potabile Annualità 2019

prevede che si possa ridurre la frequenza di campionamento, ove non vi siano fonti antropiche o naturali che ne possano determinare presenza nelle acque. In particolare, nel quinquennio precedente, gli esiti analitici delle singole sostanze che compongono *IPA* e *Antiparassitari totali* sono sempre risultati inferiori al limite di quantificazione.

ACQUE DESTINATE ALLA PRODUZIONE DI ACQUA POTABILE

(n° 2 Corpi Idrici, n° 2 stazioni di campionamento)

Parametri di cui alla Tab. 1/A – All. 2 – Parte III - D.Lgs. 152/2006 e Sostanze chimiche di cui alle Tabelle 1/A e 1/B del D.Lgs 172/2015 (una tantum)

Matrice "Acque", parametri di cui alla Tabella 152/2006 Monitoraggio con ca	5 -		ni alle Tabelle 1/A e 1/B del D.Lgs 172/2015 - o una tantum				
Acidità (concentrazione ioni idrogeno)	pH		1.1.1-tricloro-2.2bis(p-clorofenil)etano				
Totale materie in sospensione	TSS		1.1.1-tricloro-2(o-clorofenil)-2-(p-clorofenil)etano				
Temperatura	°C		1.1-dicloro-2.2bis(p-clorofenil)etilene				
Conducibilità	Conducibilità		1.1-dicloro-2-(o-clorofenil)-2-(p-clorofenil)etilene				
Fluoruri	F		2.4'-DDD				
Cloruri	CI		alfa-HCH				
Cloro organico totale estraibile	Cl ₂		beta-HCH				
Domanda chimica ossigeno (COD)	COD		gamma-HCH				
Tasso di saturazione dell'ossigeno disciolto	O ₂	Pesticidi	delta-HCH				
Domanda biochimica di ossigeno (BOD ₅) a 20 °C senza			Aldrin				
nitrificazione	BOD ₅		Dieldrin				
Carbonio organico totale	TOC		Endrin				
Carbonio organico residuo (dopo flocculazione e			Isodrin				
filtrazione su membrana da 5 μ) TOC	TOCdf		alfa-Endosulfan				
Caratteri organolettici	Colore		Parathion				
Caratteri organolettici	Odore		Esaclorobenzene				
	Azoto Kjeldahl (N-tot. escluso NO2 ed NO3)		Pentaclorobenzene				
Ī	NH ₄		1.2.4-triclorobenzene				
Nutrienti	NO ₃		1.2.3-triclorobenzene				
Nutrent	· ·		esaclorobutadiene				
	NO ₂		1.2-dicloroetano				
	PO ₄	Solventi clorurati	tricloroetilene				
Solfati	SO ₄		tetracloroetilene				
Cianuri	Cn		diclorometano				
	Antimonio		triclorometano				
	Arsenico		Ottilfenolo				
	Bario	Alchilfenoli	4(para)nonilfenolo				
	Berillio	Tetracloruro di carbonio	CCI ₄				
	Boro	Tenacionaro di carbonio	Clorpyrifos				
_	Cadmio	Pesticidi fosforati	Clorpyritos				
	Cobalto Cromo totale	Ftalati	Clorienvintos Ftalato di bis (2-etilesile)				
Metalli	Ferro disciolto	Difenileteri bromati	sommatoria congeneri 28, 47, 99, 100, 153, 154				
wetani	Manganese	Diferineteri biolilati	antracene				
<u> </u>	Mercurio		benzo(a)pirene				
 	Nichelio		benzo(b)fluorantene				
-	Piombo		benzo(ghi)perilene				
 	Rame	Idrocarburi Policiclici Aromatici	benzo(k)fluorantene				
<u> </u>	Selenio		fluorantene				
 	Vanadio		indeno(1.2.3-cd)pirene				
	Zinco		naftalene				
Famali	Metodo paranitroanilina	Composti organostannici					
Fenoli	Metodo 4-amminoantipirina	Composit organostamici	tributilstagno trifuralin				
Tensioattivi (che reagiscono al blu di metilene)	MBAS						
Sostanze estraibili al cloroformio	SEC	Prodotti fitosanitari	alactor				
Idrocarburi disciolti o emulsionati	ldrocarburi di origine petrolifera		simazina				
	Coliformi totali		atrazina				
Batteriologia	Coliformi fecali	Diserbanti ureici	diuron				
<u> </u>	Streptococchi fecali	0.1	isoproturon				
	Salmonella	Solventi aromatici	benzene				

Anche nel corso del 2019, a causa di problematiche tecniche dei laboratori di ARPA Puglia, non è stato possibile effettuare la determinazione del parametro "Sostanze estraibili al cloroformio"; l'analisi dei dati storici di tale parametro nei due invasi ha comunque mostrato valori sempre rientranti nel limiti per la classificazione in A1.

Nell'invaso di Occhito, il parametro "Cloro organico totale estraibile" non è stato determinato, in quanto il metodo utilizzato dal Laboratorio ARPA di competenza è in fase di rivalutazione.

Ciò premesso, i risultati del monitoraggio condotto nel corso del 2019 hanno permesso di valutare la conformità delle acque dei due invasi rispetto ai limiti imposti dalla norma, e quindi di classificarli.

Nella tabella seguente si riporta la proposta di classificazione in accordo ai singoli parametri per l'anno 2019.

Acque destinate alla produzione di acqua potabile Annualità 2019

Monitoraggio 2019 - Acque destinate alla produzione di acqua potabile. Verifica della Conformità al D.Lgs. 152/06

	20	19
	Occhito	Locone
	presso diga	presso diga
	AP_IO01	AP_IL01
Parametro	Categoria	Categoria
рН	A1	A2
Colore	A1	A2
Solidi sospesi	A1	A1
Temperatura	A1 (proposta di deroga)	A1 (proposta di deroga)
Conduttività	A1	A1
Odore	A1	A1
Nitrati	A1	A1
Fluoruri	A1	A1
Cloro organico totale estraibile	n.d.	-
Ferro disciolto	A1	A1
Manganese	A1	A1
Rame	A1	A1
Zinco	A1	A1
Boro	A1	A1
Berillio	-	-
Cobalto	-	-
Nichel	-	-
Vanadio	-	-
Arsenico	A1	A1
Cadmio	A1	A1
Cromo totale	A1	A1
Piombo	A1	A1
Selenio	A1	A1
Mercurio	A1	A1
Bario	A1	A1
Cianuro	A1	A1
Solfati	A1	A1
Cloruri	A1	A1
Tensioattivi	A1	A3
Fosfati	A1	A1
Fenoli	A1	A1
Idrocarburi disciolti o emulsionati	A1	A1
Idrocarburi policiclici aromatici	A1	A1
Antiparassitari totali	A1	A1
COD	-	-
Saturazione O ₂ disciolto	A1	A1
BOD ₅	A2	A2

Acque destinate alla produzione di acqua potabile Annualità 2019

	20	19
	Occhito presso diga	Locone presso diga
	AP_IO01	AP_IL01
Parametro	Categoria	Categoria
Azoto Kjeldahl	A1	A1
Ammoniaca	A1	A1
Sostanze estraibili al cloroformio	n.d.	n.d.
Carbonio organico totale	-	-
Carbonio organico residuo TOC	-	-
Coliformi Totali	A2	A2
Coliformi Fecali	A1	A2
Streptococchi Fecali	A1	A2
Salmonelle	A2	А3
PROPOSTA DI CLASSIFICAZIONE in Categoria	A2	А3

Sulla base degli esiti del monitoraggio condotto nel 2019 si formulano, pertanto, le seguenti proposte di classificazione:

Invaso di Occhito

Proposta di classificazione in categoria A2

Gli esiti analitici, nel 2019, sono tali da consentire di avanzare la proposta di classificazione in categoria A2, dopo un quinquennio di classificazione in A3.

La proposta di classificazione in A2 è condizionata dai parametri BOD_{5,} Coliformi totali e Salmonelle; tutti i restanti parametri rientrano nei limiti previsti per la classificazione in Categoria A1.

Per il parametro temperatura si propone una deroga ai sensi dell'art. 81 lettera b) per i due superamenti del valore limite (26 °C a fronte del valore imperativo di 25 °C) registrati nelle mensilità di giugno e luglio, date le caratteristiche meteo-climatiche regionali e locali.

Invaso del Locone

Proposta di classificazione in categoria A3

Anche per il 2019 si reitera la proposta di classificazione in categoria A3, condizionata dal parametro "Salmonelle", la cui presenza in un litro è stata rinvenuta in quattro campioni e dal parametro "Tensioattivi".

I parametri "pH", "colore", "BOD₅", "Coliformi totali", "Coliformi fecali" e "Streptococchi" presentano valori rientranti nei limiti della Categoria A2; tutti i restanti parametri rientrano nei limiti previsti per la classificazione in Categoria A1.

Per il parametro temperatura, infine, si propone una deroga ai sensi dell'art. 81 lettera b) per i tre superamenti del valore limite registrati nelle mensilità di giugno, luglio e agosto, date le caratteristiche meteo-climatiche regionali e locali.

Acque destinate alla produzione di acqua potabile Annualità 2019

Analisi delle criticità e trend

In generale la situazione qualitativa dei due invasi appare in miglioramento.

Per l'invaso di Occhito si avanza – dopo un quinquennio – una proposta di classificazione in A2; il parametro BOD₅, che ha condizionato a partire dal 2014 la classificazione in A3, continua a presentare un trend della media annua in miglioramento (media annua 2019 pari a 2,68 mg/l; 2018 pari a 3 mg/L; 2017 pari a 3,33 mg/L; 2016 pari a 3,58 mg/L; 2015 pari a 4,16 mg/L).

Con riferimento all'invaso del Locone, si conferma rientrata la criticità legata al parametro BOD₅ che ne aveva condizionato, per il 2016, la proposta di classificazione in SubA3. Nel 2018, i valori sono risultati sempre inferiori al limite di rilevabilità strumentale, fatta eccezione per i valori misurati nei mesi di luglio e agosto. Si conferma la criticità legata alla presenza di Salmonelle.

Classificazione nelle categorie di trattamento degli invasi pugliesi.
Periodo 2008-2019

	Invaso di Occhito	Invaso del Locone					
2008	A2	A2					
2009	A2	A2					
2010	A2	А3					
2011	A2	A2					
2012	A2	А3					
2013	A2	А3					
2014	A3	А3					
2015	A3	А3					
2016	A3	subA3					
2017	A3	А3					
2018	A3	А3					
2019	A2	А3					

Di seguito si riporta la tabella con gli esiti analitici relativi ai parametri della Tab. 1/A, Allegato 2 alla parte III del D.Lgs. n. 152/06 registrati nei due invasi destinati alla produzione di acqua potabile, valutati secondo la legenda qui riportata:

Legenda

- (o) deroghe in conformità all'art.8 lettera b
- (*) deroghe in conformità all'art.8 lettera d

Valori che rientrano nella categoria A1
Valori che rientrano nella categoria A2
Valori che rientrano nella categoria A3
Valori superiori ai limiti indicati in Tab.
Limiti non previsti in Tabella

m.l.q. valore minore del limite di qualificazione

Acque destinate alla produzione di acqua potabile Annualità 2019

Acque superficiali destinate alla produzione di acqua potabile della Regione Puglia. Annualità 2019 (segue alla pagina successiva).

		para	• ametri derogabili	_	(o)		(o)	•	JIOGGETC	(*) - (o)	•	•	(*)	(*)	(o)	Ū							ia sacce	•			
Stazione	Ambito geografico		Prelievo	Hā	Colore	Solidi sospesi	Temperatura	mo/Sm	e op O fattore	Nitrati	Fluoruri	Cloro organico totale estraibile	Ferro disciolto	Manganese	Rame	Zinco	Boro	Berillio	Cobalto	Nichel	Vanadio	Arsenico	Cadmio	Cromo totale	Piombo	Selenio	Mercurio
			data	Unità	mg/L scala pt	mg/L MES	C°	а 20°C	diluizione a 25°C	mg/L NO3	mg/L F	mg/L CI	mg/L Fe	mg/L Mn	mg/L Cu	mg/L Zn	mg/L B	mg/L Be	mg/L Co	mg/L Ni	mg/L V	mg/L As	mg/L Cd	mg/L Cr	mg/L Pb	mg/L Se	mg/L Hg
			21/01/19	8,1	Assenza	4	7	433	1	6	0,5		0,03	m.l.q.	0,002	m.l.q.	0,17	m.l.q.	m.l.q.	0,002	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
			19/02/19	7,6	Assenza	9	7	432	1	6	0,5		m.l.q.	m.l.q.	0,001	m.l.q.	0,15	m.l.q.	m.l.q.	0,001	m.l.q.	0,0005	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
			22/05/19	8,1	Assenza	29	17	552	1	6	0,5		m.l.q.	m.l.q.	0,001	m.l.q.	0,16	m.l.q.	m.l.q.	0,001	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
			11/06/19	8,1	Assenza	5	23	601	1	5	0,5		m.l.q.	m.l.q.	0,001	m.l.q.	0,16	m.l.q.	m.l.q.	0,001	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
11		diga	18/06/19	8,1	Assenza	3	26	625	1	5	0,5		m.l.q.	m.l.q.	0,001	m.l.q.	0,16	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
AP_1001	Occhito		30/07/19	8,3	Assenza	5	26	619	1	4	0,5		0,010	m.l.q.	0,001	m.l.q.	0,15	m.l.q.	m.l.q.	0,001	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
A.		presso	10/09/19	8,2	Assenza	3	24	598	1	3	0,5		m.l.q.	m.l.q.	0,001	m.l.q.	0,16	m.l.q.	m.l.q.	0,001	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
		"	24/09/19	8,3	Assenza	3	23	588	1	3	0,5		m.l.q.	m.l.q.	0,001	m.l.q.	0,16	m.l.q.	m.l.q.	0,001	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
			15/10/19	8,3	Assenza	1	20	559	1	3	0,5		m.l.g.	m.l.g.	0,001	m.l.g.	0,16	m.l.g.	m.l.g.	0,001	m.l.q.	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.
			26/11/19	8,2	Assenza	1	15	504	1	m.l.g.	0,5		m.l.g.	0,01	0,001	m.l.g.	0,16	m.l.g.	m.l.g.	0,001	m.l.q.	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.
			17/12/19	7,9	Assenza	12	12	477	1	4	0,5		m.l.g.	m.l.g.	0,001	m.l.g.	0,17	m.l.g.	m.l.g.	0,001	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.	m.l.g.
				A1	A1	A1	A1°	A1	A1	A1	A1	n.d.	A1	A1	A1	A1	A1				-	A1	A1	A1	A1	A1	A1
		l	28/01/19	8.2	7	12	7	m l n	Accettabile	3	0.6	m.l.a.	mla	0.02	0.001	m l a	0.07	m.l.a.	m.l.a.	0,001	0,002	0,001	mla	mla	0.0003	m l a	m l a
			19/02/19	8.7	6	3.1	8	m I a	Accettabile	4	0,6	m.l.q.	0,18	0,01	0,002	m l a	0,13	m.l.g.	m.l.g.	0,001	0,002	0,001	m l a	m l a	0,0003	m l a	m l a
			25/03/19	8,3	15	m.l.a.	12	550	Accettabile	5	0,6	m.l.g.	0,04	0,01	0,003	m.l.a.	0,15	m.l.g.	m.l.g.	m.l.g.	0,002	0,001	0,00005	m.l.a.	0,0003	m.l.a.	m.l.a.
			16/04/19	8,6	23	m.l.a.	14	575	Accettabile	5	0,6	m.l.g.	0,06	0,01	0,002	m.l.a.	0,09	m.l.g.	m.l.a.	m.l.g.	0,002	0,001	m.l.a.	m.l.a.	0,0003	m.l.a.	m.l.a.
		_	20/05/19	8,6	23	4,2	17	635	Accettabile	5	0,6	m.l.a.	0,02	0,01	0,002	m.l.a.	0,13	m.l.a.	m.l.a.	0,001	0,002	0,001	m.l.a.	m.l.a.	0,0002	m.l.a.	m.l.a.
10.		diga	24/06/19	8.2	1	4.8	26	766	Accettabile	5	0.7	m.l.a.	0.05	0,01	m.l.a.	m.l.a.	0.13	m.l.a.	m.l.a.	0,001	0,002	0.001	m.l.a.	m.l.a.	m.l.a.	m.l.a.	m.l.a.
AP_IL01	Locone	esso	23/07/19	8.4	3	m.l.a.	26	755	Accettabile	5	0.6	m.l.a.	m.l.a.	0,01	m.l.a.	m.l.a.	0,14	m.l.a.	m.l.a.	0,001	0,002	0,001	m.l.a.	m.l.g.	0.0003	m.l.a	m.l.a
<		pre	26/08/19	8,6	3	m.l.a.	26	758	Accettabile	4	0.6	m.l.a.	m.l.g.	0.01	0.002	0.05	0.14	m.l.a.	m.l.a.	m.l.a.	0.002	0.001	0.00017	m.l.g.	0.0001	m.l.a	m.l.a
l			24/09/19	8,5	m.l.a.	5,4	23	705	Accettabile	m.l.a.	0,6	m.l.q.	0,01	0,01	m.l.a.	m.l.a.	0,14	m.l.g.	m.l.g.	m.l.g.	0,002	0,001	0,00022	m.l.g.	m.l.a.	m.l.a	m.l.a
l			21/10/19	8,6	3	6.5	20	1	Accettabile	m.l.a.	m.l.a	m.l.a.	0,01	0.02	m.l.a.	m.l.a.	0.13	m.l.a.	m.l.a.	m.l.a.	0.002	0.001	m.l.a.	m.l.g.	0.0002	m.l.a	m.l.a
			26/11/19	8,3	m.l.a.	9,7	14	m.l.a	Accettabile	4	0,6	m.l.g.	m.l.a.	0,03	m.l.a.	m.l.a.	0,14	m.l.g.	m.l.g.	0,001	0,002	0,001	m.l.a.	m.l.g.	0,0004	m.l.a	m.l.a
			16/12/19	8,3	5	10	11	m.l.a	Accettabile	5	0.6	m.l.a.	m.l.a.	0.03	m.l.a.	m.l.a.	0.15	m.l.a.	m.l.a.	m.l.g.	0,002	0,001	m.l.a.	m.l.g.	0.0002	m.l.a	m.l.a
	,			A2	A2	A1	A1°	A1	A1	A1	A1	-	A1	A1	A1	A1	A1		-	-	-	A1	A1	A1	A1	A1	A1
			G	6,5-8,5	10	25	22	1000	3	25	0,7/1	_	0,1	0,05	0,02	0,5	1					0,01	0,001				0,0005
		A1	i	-	20(o)	-	25(o)	-	-	50(o)	1,5	-	0,3	-	0,05(o)	2		-	-	-	-	0,05	0,005	0,05	0,05	0,01	0,0003
	ti ai sensi del gs.152/2006	A2	G	5,5-9	50	-	22	1000	10		0,7/1,7	-	1	0,1	0,05	1	1	-	-	-	-	-	0,001	-	-		0,0005
	- Tabella 1/A	AZ	I	-	100(o)	-	25(o)	-	-	50(o)		-	2	-	-	5	-	-	-	-	-	0,05	0,005	0,05	0,05	0,01	0,001
		А3	G	5,5-9	50	-	22	1000	20		0,7/1,7	-	1	1	1	1	1	-	-	-	-	0,05	0,001			-	0,0005
				-	200(o)		25(o)	-	_	50(o)		-	-	-		5		-	-	-	-	0.1	0,005	0,05	0.05	0,01	0,001

Acque destinate alla produzione di acqua potabile Annualità 2019

															Allitualita 2019										
		para	ımetri derogabili			(o)			(*)					(*)	(*)	(*)		(o)							
Stazione	Ambito geografico		Prellevo	Bario	Cianuro	mg/L SOlfati	Cloruri	mg/L Tensioattivi	mg/r Fosfati	. Leno ii.	Idrocarburi disciolti o	Idrocarburi policiclici aromatici	B Antiparassitari totali	mg/L O2	Saturazione O 2 disciolto	Mg/L O2	M Azoto Kjeldahl	Ammoniaca	Sostanze estraibili al	Carbonio organico	Carbonio organico	Coliformi Totali	Coliformi Fecali	Strept ococchi Fecali	. Salmonelle
								di laurile	P2O5	C6H5OH															
			21/01/19	0,06	m.l.q.	86	34	m.l.q.	m.l.q.	m.l.q.	m.l.q.			10	102,3	4	m.l.q.	m.l.q.		3	3	37	3	8	Assenza in 1L e 5L
			19/02/19	0,06	m.l.q.	83	34	m.l.q.	m.l.q.	m.l.q.	m.l.q.			10	105,4	m.l.q.	1	m.l.q.		3	3	9	0	0	Assenza in 1L e 5L
			22/05/19	0,05	m.l.q.	85	34	m.l.q.	m.l.q.	m.l.q.	m.l.q.		_	m.l.q.	101	m.l.q.	m.l.q.	m.l.q.		3	3	15	0	0	Assenza in 1L e 5L
		, a	11/06/19	0,04	m.l.q.	82	33	m.l.q.	m.l.q.	m.l.q.	m.l.q.	0	0	m.l.q.	101,9	4	m.l.q.	m.l.q.		4	4	370	0	2	Assenza in 1L e 5L
AP_1001		diga	18/06/19	0,05	m.l.q.	82	33	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	107	m.l.q.	m.l.q.	m.l.q.		3	3	700	0	0	Assenza in 1L e 5L
اے	Occhito	sso	30/07/19	0,05	m.l.q.	82	34	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	111,5	m.l.q.	m.l.q.	m.l.q.				1.100	0	0	Assenza in 1L e 5L
- ▼		pre	10/09/19	0,05	m.l.q.	83	33	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	93,2	m.l.q.	m.l.q.	m.l.q.		3	3	3.600	0	0	Assenza in 1L, presenza in 5L
			24/09/19	0,06	m.l.q.	84	33	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	96,7	m.l.q.	m.l.q.	m.l.q.		3	3	3.400	0	0	Assenza in 1L e 5L
			15/10/19	0,06	m.l.q.	82	34	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	91,7	m.l.q.	m.l.q.	m.l.q.		3	3	2.300	0	0	Assenza in 1L e 5L
			26/11/19	0,06	m.l.q.	83	35	m.l.q.	m.l.q.	m.l.q.	m.l.q.			11	92,3	4	m.l.q.	m.l.q.		3	3	210	17	37	Assenza in 1L, presenza in 5L
L			17/12/19	0,06	m.l.q.	91	51	m.l.q.	m.l.q.	m.l.q.	m.l.q.			10	98,8	7	m.l.q.	m.l.q.		3	3	18	0	0	Assenza in 1L, presenza in 5L
				A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	-	A1	A2	A1	A1	n.d.	-	-	A2	A1	A1	A2
			28/01/19	0.04	m.l.a.	81	52	0.1	m.l.a.	m.l.a.	m.l.a.			m.l.a.	101	m.l.a.	m.l.a.	0.05		2.7	1,8	68	39	81	Assenza in 1L e 5L
			19/02/19	0.07	m.l.a.	84	54	0,3	m.l.a.	m.l.a.	m.l.a.			m.l.a.	115	m.l.a.	m.l.a.	m.l.a.		3	1,9	14	11	10	Assenza in 1L e 5L
			25/03/19	0,07	m.l.g.	92	58	m.l.g.	m.l.g.	m.l.g.	m.l.g.			m.l.g.	96	m.l.g.	m.l.g.	m.l.g.		3,9	2,5	48	13	0	Assenza in 1L, presenza in 5L
			16/04/19	0,07	m.l.g.	92	58	0,2	m.l.g.	m.l.g.	m.l.g.			m.l.g.	98	m.l.g.	1,0	0,06		3,3	2,4	42	23	21	Presenza/1L
		в	20/05/19	0,08	m.l.q.	97	61	0,2	m.l.q.	m.l.q.	m.l.q.	0	0	m.l.q.	91	m.l.q.	m.l.q.	m.l.q.		3	2,9	24	11	10	Assenza in 1L, presenza in 5L
101		diga	24/06/19	0,07	m.l.g.	100	66	0,2	m.l.g.	m.l.g.	m.l.g.			m.l.g.	95	m.l.g.	m.l.g.	m.l.g.		3,8	2,9	42	13	0	Presenza/1L
AP_1101	Locone	sso	23/07/19	0,08	m.l.q.	100	66	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	100	9	1,0	m.l.q.		4	2,8	50	10	0	Assenza in 1L e 5L
1		pre	26/08/19	0,08	m.l.q.	100	69	m.l.q.	0,3	m.l.q.	m.l.q.			m.l.q.	94	4	1,0	m.l.q.		3,7	3,6	43	14	13	Assenza in 1L e 5L
			24/09/19	0,08	m.l.q.	99	63	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	86	m.l.q.	1,0	m.l.q.		2,8	1,6	19	0	0	Assenza in 1L e 5L
			21/10/19	0,08	m.l.q.	100	68	m.l.q.	m.l.q.	m.l.q.	m.l.q.			m.l.q.	81	m.l.q.	1,0	m.l.q.		2,6	2	11	0	0	Assenza in 1L e 5L
			26/11/19	0,09	m.l.q.	96	65	0,3	m.l.q.	m.l.q.	m.l.q.			m.l.q.	87	m.l.q.	1,0	0,02		2,6	m.l.q.	200	33	18	Presenza/1L
			16/12/19	0,08	m.l.q.	94	62	0,4	m.l.q.	m.l.q.	m.l.q.			m.l.q.	91	m.l.q.	1,0	0,04		2,7	1,8	130	61	74	Presenza/1L
				A1	A1	A1	A1	A3	A1	A1	A1	A1	A1		A1	A2	A1	A1	n.d.	-	-	A2	A2	A2	A3